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Theory Uncertainties and Correlations

Reliable theory uncertainties are essential for any precision studies and
interpretation of experimental measurements

@ Especially when theory uncertainties 2 experimental uncertainties

@ Correlations can have significant impact

> In fact, whenever one combines more than a single measurement, one
should ask how the theory uncertainties in the predictions for each
measurement are correlated with each other

» Correlations among different points in a resummed spectrum
» Correlations between predictions for different Q, processes, observables, ...

@ So far we have (mostly) been skirting the issue
» However, experimentalists have to treat theory uncertainties like any other
systematic uncertainty, and in absence of anything better they have to make
something up based on naive scale variations
> In likelihood fits, some (possibly enveloped) scale variation impact will get
treated as a free nuisance parameter and floated in the fit
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Example: Measurement of the W Mass
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= Strategy: Exploit precisely measured Z pr spectrum to get best possible
description for W

» Regardless how precisely do (W) /dpr can be calculated directly, one
always wants to exploit Z data to maximize precision
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Extrapolating from Z to W

do(W) {da(Z)} {da(W)/de]
de de measured dO’(Z)/de theory
ne;aed measur;rprecisely calculat;rprecisely

theory uncertainties cancel

@ Ratio is just a proxy
» More generally: Combined fit to both processes
» Tuning Pythia on Z and using it to predict W is one example of this
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Extrapolating from Z to W

do(W) [da(Z)} {da(W)/de]
de de measured dO’(Z)/de theory
ne;aed measurevprecisely calculat;rFJreciser

theory uncertainties cancel

@ Ratio is just a proxy
» More generally: Combined fit to both processes
» Tuning Pythia on Z and using it to predict W is one example of this

@ Crucial Caveat: Cancellation fundamentally relies on theory correlations
» Take 10% theory uncertainty on do (W) and do(Z)
— 99.5% correlation yields 1% uncertainty on their ratio
— 98.0% correlation yields 2% uncertainty on their ratio — 2 x larger!

@ One of many examples, this happens whenever experiments extrapolate
from some control region or process to the signal region
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Theory Correlations

Correlations only come from common sources of uncertainties
@ Straightforward for unc. due to input parameters (as(mz), PDFs, ...)

What to do about perturbative theory uncertainties?
X Scale variations are not quantitatively reliable to begin with
X Moreover, they are inherently ill-suited for correlations
X Scales are not physical parameters with an uncertainty that can be
propagated, they simply specify a particular perturbative scheme

X They are not the underlying source of uncertainty, i.e., they do not become
better known at higher order

X Taking an envelope is not a linear operation and so does not propagate

X Trying to decide how to correlate scale variations (e.g. between processes)
is really just a bandaid, but not addressing the real problem
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Theory Correlations

Correlations only come from common sources of uncertainties
@ Straightforward for unc. due to input parameters (as(mz), PDFs, ...)

What to do about perturbative theory uncertainties?
X Scale variations are not quantitatively reliable to begin with
X Moreover, they are inherently ill-suited for correlations
X Scales are not physical parameters with an uncertainty that can be
propagated, they simply specify a particular perturbative scheme

X They are not the underlying source of uncertainty, i.e., they do not become
better known at higher order

X Taking an envelope is not a linear operation and so does not propagate

X Trying to decide how to correlate scale variations (e.g. between processes)
is really just a bandaid, but not addressing the real problem

X Even the most sophisticated profile scale variations are insufficient

X The profile shapes are designed to turn off resummation and match to
fixed-order, not to capture correlations in the spectrum

X See e.g. inconsistent uncertainties from spectrum vs. cumulant scales
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Power Expansion

Define scaling variable T = p3./m3%,, To/mv, ... and expand in powers of
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Factorization and Resummation

Leading-power spectrum factorizes into

hard, collinear, and soft contributions, e.g. for pr
do(©®
dpr

= oo H(Q, 1) /dzﬁa d2ky, A2k,

X Ba(Eav Qeya 122 V) Bb(Eln Qe_Y7 s V)
X S(Kayptyv) 8Py — ka — kp — k)

@ Each function is a renormalized object with an associated RGE
» Structure depends on type of variable but is universal for all hard processes
=- Dependence on pr and Q is fully determined to all orders by a coupled
system of differential equations
» Their solution leads to resummed predictions

» Each resummation order (only) requires as ingredients anomalous
dimensions and boundary conditions entering the RG solution
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Simplest Example: Multiplicative RGE

All-order RGE and its solution

N@ =vu(Q, l‘/) H(Q, pn)
I

’

= H(Quw) = H(Q) x exp| /Q ' d,:f (@)

Necessary ingredients
@ Boundary condition

H(Q) =1+ as(Q)h1 +a*(Q) hy + - -
@ Anomalous dimension

Yu(Q, 1) = as(pu)[To + as(p) T1 4 -+ -] mi2

+ as(p) [0 + s () 1 + -+ ]

= Resummation is determined by coefficients of three fixed-order series
» True regardless of how RGE is solved in more complicated cases
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Theory Nuisance Parameters

Perturbative series at leading power is determined to all orders by a coupled
system of differential equations (RGEs)

boundary conditions| anomalous dimensions

— Each resummation order only order || hn | 8n bn | A" AL Tw Bn
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, NLL" || by |81 b1 | v T1 B
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perturbative theory uncertainty ~ N LL'|| 7s | s b3 |92 92 Ts fBs
N'LL'|| ha | 84 ba |42 ~5 Ta PBa

@ Basic Idea: Treat them as theory nuisance parameters

v Vary them independently to estimate the theory uncertainties

v Impact of each independent nuisance parameter is fully correlated across all
kinematic regions and processes

v Impact of different nuisance parameters is fully uncorrelated

@ Price to Pay: Calculation becomes quite a bit more complex
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Numerous Advantages

Immediately get all benefits of parametric uncertainties
v Encode correct correlations
v~ Can be propagated straightforwardly
» Including Monte Carlo, BDTs, neural networks, ...
v~ Can be consistently included in a fit and constrained by data

» Even okay to use control measurements to reduce theory uncertainties
» Due to central-limit theorem, total theory uncertainty becomes Gaussian
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v Encode correct correlations
v~ Can be propagated straightforwardly
» Including Monte Carlo, BDTs, neural networks, ...

v~ Can be consistently included in a fit and constrained by data

» Even okay to use control measurements to reduce theory uncertainties
» Due to central-limit theorem, total theory uncertainty becomes Gaussian

Additional theory benefits compared to scale variations
@ Uncertainties can be evaluated in one space and propagated to another
(Fourier conjugate, cumulant, spectrum)
@ Can do partial orders and fully exploit all known higher-order information
» Can account for new structures appearing at higher order

@ Fully factorizes the uncertainties
» Can study perturbative convergence at level of individual building blocks
» Much safer against accidental underestimates due to multiple parameters
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How to Vary What

@ Level 1: At given order vary parameters around their known values
co+ as(p)[er + as(p) ez ++++] = co+ as(p)(cr + 61)

» Simpler but perhaps less robust

@ Level 2: Implement the full next order in terms of unknown parameters
co+ as(p)[er + as(p) ez + -] = co+ as(p)[er + as(p) 02)

» More involved, but also more robust, allowing for maximal precision

@ In general, can have combination of both
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How to Vary What

@ Level 1: At given order vary parameters around their known values
co+ as(p)[er + as(p) ez ++++] = co+ as(p)(cr + 61)

» Simpler but perhaps less robust

@ Level 2: Implement the full next order in terms of unknown parameters
co+ as(p)[er + as(p) ez + -] = co+ as(p)[er + as(p) 02)

» More involved, but also more robust, allowing for maximal precision
@ In general, can have combination of both

Note: Some parameters are actually functions of additional variables
@ E.g. beam function constants, auxiliary dependences (jet radius, ...)
@ In principle, one needs to parametrize an unknown function
» Can e.g. expand/parametrize in terms of appropriate functional basis
» Compared to scale variations, choices are now explicit and testable
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Drell-Yan at High Q vs. Z Pole
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A theory prediction without an uncertainty is about as useful as a
measurement without an uncertainty

@ Uncertainties need to be reliable (small is not good enough ...)

Theory nuisance parameters overcome many problems of scale variations

@ Allow to rigorously quantify pert. theory uncertainties and correlations
@ Encode correct correlations
» Between different pr values, @Q values, partonic channels, hard processes
» Between different variables (p'r, pc*, 7o, 7, C, ...),
» Multi-differential cases, cases with auxiliary measurements, ...

@ Can be propagated straightforwardly

» Including Monte Carlo, BDTs, neural networks, ...
» Crucial for consistent treatment of theory uncertainties by experiments

= A plethora of applications to explore ...
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